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Adaptive strategy of the supersonic turbulent �ow over a
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SUMMARY

An adaptive strategy incorporating mesh remeshing and re�ning is developed to study the supersonic
turbulent �ow over a backward-facing step on a mixed quadrilateral–triangular mesh. In the Cartesian
co-ordinate system, the unsteady Favre-averaged Navier–Stokes equations with a low-Reynolds-number
k–� turbulence model are solved using a locally implicit scheme with an anisotropic dissipation model. In
the present adaptive strategy, two error indicators for both mesh remeshing and re�ning, respectively,
are presented. The remeshing error indicator incorporates uni�ed magnitude of substantial derivative
of pressure and that of vorticity magnitude, whereas the re�ning error indicator incorporates uni�ed
magnitude of substantial derivative of pressure and that of weighted vorticity magnitude. To assess the
present approach, the transonic turbulent �ow around an NACA 0012 airfoil is performed. Based on the
comparison with the experimental data, the accuracy of the present approach is con�rmed. According
to the high-resolutional result on the adaptive mesh, the structure of backstep corner vortex, expansion
wave and oblique shock wave is distinctly captured. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Several applications including scramjet, missile, rocket and spacecraft may directly bene�t
from further understanding the supersonic �ow over a backward-facing step. Research of �ow
separation and reattachment at supersonic speeds is commonly conducted in backward-facing
step con�gurations. Such a �ow�eld can be described as a supersonic �ow that turns be-
yond the step corner through an expansion fan, and turns back to a direction approximately
parallel to the in�ow by an oblique reattachment shock wave. McDonald [1] and Rom [2]
applied the momentum integral method to obtain the base pressure, where �ow conditions in
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the reattachment zone were explicitly described. Recently, non-intrusive optical methods such
as the laser Doppler velocimetry (LDV) [3–5] and planar laser-induced �uorescence (PLIF)
[6] have been applied to measure the �ow properties directly. A number of CFD researchers
solved Euler [7, 8] and Navier–Stokes [5, 9–13] equations to investigate the supersonic �ows
over a backward-facing step. Loth et al. [7] utilized the �nite element method-�ux corrected
transport algorithm and adaptive unstructured gridding to solve the unsteady Euler equations.
Yang [8] presented an error indicator in which the uni�ed magnitude of pressure gradient and
uni�ed magnitude of gradient of vorticity magnitude were incorporated to study the supersonic
inviscid �ow over a backward-facing step. The mesh re�nement with a two-level re�nement
procedure was employed. Arai et al. [5] applied the total variation diminishing (TVD) �nite-
di�erence scheme, in which eddy viscosity was determined using Baldwin–Lomax turbulence
model. Kuruvila and Anderson [9] solved the Navier–Stokes equations by means of Mac-
Cormack scheme with a fourth-order numerical dissipation term. They concluded that the
numerical dissipation had virtually no e�ect on the results for an adiabatic wall case. On
patched mesh systems, Lombard et al. [10] used the implicit upwind scheme, which was
based on a characteristic eigenvector decomposition of the spatially averaged �ux di�erence
Jacobian matrix. Yang et al. [11] employed a �ux-vector splitting lower–upper symmetric
successive overrelaxation scheme, and deduced that reduction of the base pressure and recir-
culation zone could cause di�culties in ignition and �ameholding in Scramjet combustors.
Tucker and Shyy [12] introduced the FDNS code [14], in which k–� turbulence model was
corrected to treat compressible �ows. Halupovich et al. [13] utilized the PHOENICS code
and k–� turbulence model to investigate the supersonic backstep �ow. The PHOENICS code
was found to be adequate for supersonic �ow simulation with M63:5. However, convergence
was not obtained at hypersonic turbulent �ow conditions.
As mentioned by Sheng et al. [15], the biggest advantage of the unstructured grid approach

over the structured grid approach is that the process of grid generation for complex geome-
tries is greatly simpli�ed. Also mentioned by Mavriplis [16], unstructured grid techniques
o�ered the potential for greatly reducing the grid generation time associated with complex
geometries. Furthermore, unstructured mesh approaches enabled the use of adaptive meshing
techniques, which held great promise for increasing solution accuracy at minimal additional
computational cost. Recently, considerable e�ort has been made to develop solution-adaptive
techniques [17–23] for solving the Euler/Navier–Stokes equations on unstructured meshes.
The mesh-enrichment and mesh-coarsening procedures [17] were implemented within an un-
structured grid upwind-type Euler code, and the absolute value of the substantial derivative
of density was used as an enrichment indicator. By using the two-step Runge–Kutta Galerkin
�nite element method and a local remeshing technique [18], a shock propagation within a
channel was investigated. From the time-varying meshes, directionally stretched elements were
demonstrated. Webster et al. [19] developed an adaptive �nite element methodology, in which
the �nite quadtree mesh generator, interpolation-based error indicator and edge-based mesh
enrichment procedure were employed. A grid re�nement technique [20], which was based
on a combination of surface mesh subdivision and local remeshing of the volume grid, was
developed and successfully applied to several three-dimensional �ow test cases. Walsh and
Zingg [21] presented a solution-dependent retriangulation algorithm which locally restructured
the grid to recover an anisotropic grid following adaptation. For the blade–vortex interaction
problems on unstructured meshes, a solution-adaptive dynamic mesh scheme [22] was used by
adding and deleting mesh points at every adaptation step to take account of not only spatial
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but also of temporal variations of the �ow�eld. In the author’s previous study [23], a re�n-
ing error indicator was used in which uni�ed magnitudes of dynamic grid speed, substantial
derivative of pressure, and substantial derivative of vorticity magnitude were incorporated to
study inviscid transonic �ows over vibrating blades with interblade phase angles.
In the present calculation of the supersonic turbulent �ow over a backward-facing step,

the remeshing error indicator proposed by Hwang and Wu [18] is modi�ed to incorporate
the pressure and vorticity magnitude as the remeshing key variable to treat the new node
spacing, whereas the re�ning error indicator proposed in the author’s previous study [23] is
modi�ed by weighting the vorticity magnitude to account for the viscous e�ect. The locally
implicit scheme was originally developed by Reddy and Jacock [24] on structured quadrilat-
erals. This scheme is locally implicit, but globally explicit. Hwang and Liu [25] developed
the locally implicit scheme and anisotropic dissipation model on triangular mesh. In the au-
thor’s previous study [23], the locally implicit scheme and anisotropic dissipation model were
developed on the mixed quadrilateral–triangular mesh for inviscid �ow calculations. In this
study, the locally implicit scheme and anisotropic dissipation model are extended for turbulent
�ow calculations. As far as the turbulence model is concerned, the low-Reynolds-number k–�
turbulence model proposed by Abe et al. [26] is adopted. This model was modi�ed from
the low-Reynolds-number k–� turbulence model of Nagano and Tagawa [27]. It had been
shown that the separation and reattaching �ows downstream of a backward-facing step were
simulated quite successfully.
There are three objectives in the present study: (1) to develop an adaptive strategy for

the supersonic turbulent �ow over a backward-facing step; (2) to develop a locally implicit
scheme with anisotropic dissipation model on a quadrilateral–triangular mesh for turbulent
�ow calculations; and (3) to investigate the supersonic turbulent �ow over a backward-facing
step.

2. GOVERNING EQUATIONS

The two-dimensional, unsteady Favre-averaged Navier–Stokes equations with a two-equation
low-Reynolds-number k–� turbulence model in non-dimensionalized form can be written as
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Rt =
k2

	‘�
Re

f1 = 1

f2 =
[
1− exp

(
− y∗

3:1

)]2{
1− 0:3 exp

[
−
(

Rt

6:5

)2]}

Model constants
C�=0:09; �k =��=1:4; C1 = 1:5; C2 = 1:9

Variables �; u; � and e represent the gas density, velocity component in x; y directions and the
total energy per unit volume, respectively. Pressure P is given by the equation of state, and
� is the ratio of speci�c heat.

P=(�− 1)
[
e − �

2
(u2 + v2)− �k

]
(2)

In the present calculation, the low-Reynolds-number k–� turbulence model proposed by
Abe et al. [26] is adopted. This model was modi�ed from the low-Reynolds-number model
of Nagano and Tagawa [27]. The principal improvement of this turbulence model [26] is the
usage of Kolmogorov velocity scale u�=(	‘�)1=4 instead of the friction velocity u�(u�=

√
�!=�;

�!=wall shear stress) to account for the near-wall and low-Reynolds-number e�ect. The
Kolmogorov velocity scale u� becomes zero neither at the separating nor at the reattaching
points in contrast to the friction velocity u�. It had been shown that the separation and
reattaching �ows downstream of a backward-facing step were simulated quite successfully.
By integrating Equation (1) over space and using Gauss’s theorem, the following expression
is obtained:
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dl= n̂ d‘ and n̂ is the unit normal vector in the outward direction. Fc and Fv represent the
convective and viscous �ux vectors, respectively. � is the domain of interest and @� is
the boundary of domain. A fully implicit �nite-volume discretization scheme is applied to
Equation (3) over the entire �ow�eld. Flow variables at cell faces are obtained from the
averages of �ow variables at the cell centres. These values and arti�cial dissipation terms are
introduced for line integral and numerical stability. Then, for each quadrilateral or triangular
cell i, Equation (3) becomes

Ai

(
Un+1 −Un

�t

)
i
+Qc

i (U
n+1)−Di(Un+1)=Qv

i (U
n) + Sn

i Ai (4)

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:1163–1184



1168 S.-Y. YANG

where

Qc
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Ni∑
k=1
(Fc · dl)ik

Q	
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Ni∑
k=1
(F	 · dl)ik

Ni =

{
3 for triangular cell i;

4 for quadrilateral cell i

Ai; n, and Di represent the cell area, marching time step and arti�cial dissipation operator,
respectively.
On the structured grid system, Jameson et al. [28] developed an e�ective form for Di.

The isotropic value for scaling the dissipation has been extended to unstructured triangular
meshes by Mavriplis [29]. On the static triangular mesh, Hwang and Liu [25] developed the
anisotropic dissipation model. In the author’s previous study [23], the anisotropic dissipation
model was developed on the mixed quadrilateral–triangular mesh for inviscid �ow calculations.
In this article, the anisotropic dissipation is extended on a quadrilateral–triangular mesh for
turbulent �ow calculations and described as follows:

Di(U )=
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The subscripts k1; k2 and k3 represent the indices of three adjacent cells which surround the
triangular cell k, whereas the subscripts k1; k2; k3 and k4 represent the indices of four adjacent
cells which surround the quadrilateral cell k. ∇2Ui is expressed as an undivided Laplacian
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operator.  ik is the spectral radius of Jacobian matrix (@Fc=@U · dl) on the interface between
cell i and cell k. Two constants k(2) and k(4) are taken as 1.0 and 1

32 , respectively.
To improve the convergence speed, a local time stepping technique is imposed as follows:

(
A
�t
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i
=
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k=1  ik
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(6)

where CFL is the Courant–Friedrichs–Lewy number. In order to perform the Taylor series
expansion for temporal di�erence, the term Di(Un) − Qc

i (U
n) is added to both the right-

and left-hand sides of Equation (4) in advance. Then, Taylor series expansion for temporal
di�erence is implemented on both Qc
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After the linearization, Equation (4) can be constructed in the delta form as follows:
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To solve Equation (7), a locally implicit scheme [24, 30] is implemented. This scheme
is locally implicit, but globally explicit and is unconditionally stable under local linearized
analysis [30]. It does not require the assembly of any global matrices and does not need
any matrix system solvers. The locally implicit scheme is originally developed by Reddy and
Jacock [24] on structured quadrilaterals. Hwang and Liu [25] developed the locally implicit
scheme and anisotropic dissipation model on a triangular mesh. In the author’s previous study
[23], the locally implicit scheme and anisotropic dissipation model were developed on the
mixed quadrilateral–triangular mesh for inviscid �ow calculations. In this study, the locally
implicit scheme and anisotropic dissipation model are extended on a quadrilateral–triangular
mesh for turbulent �ow calculations.
For each cell i, the equation for iterative corrections is written as

C dUi =Resni − Li(�U ) (8)

�U (m+1)
i =�U (m)

i +Win dUi; m=1; 2 (9)
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where C is a diagonal matrix de�ned as a modi�cation to the coe�cient CI
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CFL
2
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)]
I (10)

�U shown on the right-hand side of Equation (8) takes the latest available values from Equa-
tion (9). The inner iteration for �U (m+1) can be computed rapidly since the dU corrections
are explicit scalar equations. Starting at the �rst element and sweeping to the latest element,
two symmetric inner iterations are performed at each time step. At the end of a time step,
the outer relaxation is introduced.

Un+1
i =Un

i +Wout�Ui (11)

The coe�cients Win and Wout in Equations (9) and (11) are inner and outer relaxation pa-
rameters of order 1.2.

3. ADAPTIVE-MESH ALGORITHM

An adaptive strategy incorporating mesh remeshing and re�ning is developed in this paper to
study the supersonic turbulent �ow over a backward-facing step on a quadrilateral–triangular
mesh. It is well known that error indicators play an important role in the solution-adaptive
procedures. In the present adaptive strategy, two error indicators for both mesh remeshing
and re�ning, respectively, are presented. The remeshing error indicator incorporates uni�ed
magnitude of substantial derivative of pressure and that of vorticity magnitude, whereas the
re�ning error indicator incorporates uni�ed magnitude of substantial derivative of pressure
and that of weighted vorticity magnitude. The initial mesh is remeshed �rst according to
the initial solution and the corresponding remeshing error indicator is adopted to treat the
new node spacing. Then, the remeshed mesh is re�ned and the corresponding re�ning error
indicator is applied.
As far as the mesh remeshing is concerned, Hwang and Wu [18] developed a simple and

direct error indicator for remeshing instead of using second derivatives as the error indicators.
As mentioned by Hwang and Wu [18], node spacing for remeshing must be smaller in regions
of large change in properties, and was evaluated by the following expression.


2d|∇�|d=CT (12)

where � is the selected key variable, 
d the spacing at node d, and |∇�|d the absolute value
of the gradient of � at node d.
The constant CT in Equation (12) was determined by the product of the square of a

speci�ed minimum node spacing and the absolute value of the maximum solution gradient
over the whole mesh, i.e.

CT= 
2d;min|∇�|max (13)

In the present paper, the constant CT in Equation (12) is determined by the product of the
square of a speci�ed average node spacing and the average absolute value of the solution
gradients over the whole mesh, i.e.

CT= 
2d;avg|∇�|avg (14)
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The objective of substituting Equation (14) for Equation (13) is to avoid that the use of a
maximum absolute gradient may give results which are strongly dependent on the behaviour of
the single point whose solution gradient is the largest. Furthermore, when the �ow properties
become smooth over the entire computational domain, the number of remeshing cells will
increase signi�cantly, which is due to the fact that all the values of node spacing are almost
equal to the speci�ed minimum value. This drawback can also be overcome by substituting
Equation (14) for Equation (13). In order to control the largest and smallest sizes of the
remeshing cells, al1 the values of node spacing computed by Equations (12) and (14) must
be limited to the speci�ed maximum and minimum values.
As for the selection of the key variable �, density is chosen by Hwang and Wu [18]. In

the present calculations, the steady solution is achieved on the initial non-adaptive mesh in
advance. According to the initial grid and steady solution, the new node spacing of mesh
remeshing is accomplished by calculating Equations (12) and (14), and pressure is employed
as the key variable. It is found that the new mesh is capable of capturing the oblique shock
wave and expansion wave. However, it is unable to capture the structure of the backstep
corner vortex. To capture the structure of backstep corner vortex, the vorticity magnitude
(w= |∇× v|) is implemented as the key variable � to reperform the mesh remeshing. Ac-
cording to the adaptive mesh using w as the key variable � in Equations (12) and (14), the
structure of backstep corner vortex is captured clearly. However, it cannot capture the oblique
shock wave and expansion wave behaviour.
In order to capture the structure of backstep corner vortex, Prandtl–Meyer expansion wave

and oblique shock wave simultaneously, Equation (12) is modi�ed and written as follows:


2d

( |Dp=Dt|d
|Dp=Dt|max + �

|Dw=Dt|d
|Dw=Dt|max

)
=CT2 (15)

where

CT2 = 
2d; avg

( |Dp=Dt|d
|Dp=Dt|max + �

|Dw=Dt|d
|Dw=Dt|max

)
avg

(16)

|Dp=Dt|max and |Dw=Dt|max are the maximum values of |Dp=Dt| and |Dw=Dt| among the
computational cells, respectively. w is the vorticity magnitude (w= |∇× v|) and � represents
the weighted coe�cient chosen as 1.0. Since the order of magnitude of |Dw=Dt| outnumbers
that of |Dp=Dt|, it is essential to adjust both at the same order. Hence, |Dp=Dt| and |Dw=Dt|
are divided by |Dp=Dt|max and |Dw=Dt|max, respectively. According to the initial grid and
steady solution, the new node spacing of remeshing is accomplished by calculating Equations
(15) and (16). After achieving the new node spacing, the technique of stretching direction
and ratio of stretching developed by Hwang and Wu [18] is also applied. Then, the mixed
quadrilateral–triangular mesh is obtained from a combination process, which couples two
triangles into a new quadrilateral when the common side of the two triangles is the longest
one of these two triangles.
As for the initial quadrilateral–triangular mesh of supersonic turbulent backstep �ow cal-

culation, two thin layers of quadrilaterals are distributed along both upper and lower walls to
simulate boundary layer e�ects, and quadrilaterals are also distributed in the upstream area
ahead of backward-facing step to allow quick stretching in the upstream direction. Besides
these quadrilaterals, triangles are generated elsewhere. During remeshing, the triangular mesh
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is remeshed �rst according to the present remeshing error indicator and steady solution on the
initial mesh. Then, quadrilaterals are remeshed according to the boundaries connected to the
remeshed triangles. The present quadrilateral–triangular mesh is treated as a single unstruc-
tured mesh, and interfaces between quadrilaterals and triangles are removed. Therefore, the
irregularities at the interfaces between the regions with quadrilateral and triangular elements
do not a�ect the solutions.
As far as the mesh re�ning is concerned, the re�ning error indicator and re�nement tech-

nique are presented. In the author’s previous inviscid study [23], an error indicator, which
incorporated the uni�ed magnitudes of dynamic grid speed, substantial derivative of pressure
and substantial derivative of vorticity magnitude was proposed and formulated as

EI=
|DP=Dt|

|Dp=Dt|max + �1
|Dw=Dt|

|Dw=Dt|max + �2
|Vg|

|Vg|max (17)

where |Dp=Dt|; |Dw=Dt and |Vg| are the absolute values of the substantial derivative of
pressure, substantial derivative of vorticity magnitude and velocity vector of dynamic grid, re-
spectively. |Dp=Dt|max; |Dw=Dt|max and |Vg|max are the maximum values of |Dp=Dt|; |Dw=Dt|
and |Vg| among all the computational cells, respectively.
In the present turbulent study, the error indicator in Equation (17) is further improved to

account for the viscous e�ect, and the dynamic grid speed e�ect is removed. The present
error indicator is formulated as

EI =
|DP=Dt|

|Dp=Dt|max + �3
|�∗(Dw=Dt)|

|�∗(Dw=Dt)|max
�∗ = 1− e−100(Ywall=H)2

(18)

where |Dp=Dt| and |�∗(Dw=Dt)| are the absolute values of the substantial derivative of pres-
sure, and substantial derivative of weighted vorticity magnitude. Ywall is the minimum dis-
tance between the computing cell and the walls, and H is the step height. |Dp=Dt|max and
|�∗(DW=Dt)|max are the maximum values of |Dp=Dt| and |�∗(Dw=Dt)| among all the com-
putational cells, respectively. Since the order of magnitude of |�∗(Dw=Dt)| outnumbers those
of |Dp=Dt|, it is essential to adjust both at the same order. Hence, |Dp=Dt| and |�∗(Dw=Dt)|
are divided by |Dp=Dt|max and |�∗(Dw=Dt)|max, respectively. �∗ represents the weighted func-
tion and �3 is the corresponding weighted coe�cient. For the calculation of the supersonic
turbulent �ow over a backward-facing step, �3 is set to be 1.0. The purpose of imposing
�∗ in Equation (18) is to counteract the e�ect that the value of |Dw=Dt| increases abruptly
as it approaches the boundary layer, especially in the viscous sublayer. The value of �∗ in
Equation (18) will decrease abruptly as it approaches the boundary layer, especially in the
viscous sublayer.
As for the re�nement technique, the value of EI of each unre�ned cell is �rstly calculated.

The product of a speci�ed constant C1 and the average value of EI over the initial grid is
selected as the threshold value. If the value of EI of each unre�ned cell is larger than the
threshold value C1 ∗ EIave, the new node will be placed at the midpoint of each edge of
quadrilateral/triangular cell or the centre of the quadrilateral cell [31]. Normally, the value of
C1 ranges from 0.4 to 0.8. In the present calculation, C1 is chosen as 0.6. Since Webster et
al. [19] mentioned that the mesh coarsening accounted for the majority of CPU cost during
adaptation, the mesh coarsening procedure is not processed in this article.
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4. BOUNDARY CONDITIONS

In the present calculations, no-slip and adiabatic wall conditions are imposed at the body or
wall surface. Pressure is obtained by the following condition:

(x2
 + y2
)P� − (x
x� + y
y�)P
=0 (19)

where � and 
 represent the body-�tted co-ordinate lines. u= �= k=0 and �=2	‘(@
√
k=@�)2.

Density is obtained from the equation of state. As for the far �eld of transonic turbulent �ow
around an NACA 0012 airfoil, one-dimensional characteristic analysis based on Riemann
invariants is used to determine the values of �ow variables on the outer boundary of the
computational domain. Considering the supersonic turbulent �ow over a backward-facing step,
the freestream conditions are speci�ed at inlet and space extrapolation is applied on the exit
plane.

5. RESULTS AND DISCUSSION

The present numerical approach is evaluated by performing the transonic turbulent �ow around
an NACA 0012 airfoil. To further demonstrate the versatility of the present adaptive strategy,
the supersonic turbulent �ow over a backward-facing step is investigated.

5.1. Transonic turbulent �ow around an NACA 0012 airfoil

To evaluate the present solution approach, transonic turbulent �ow (M∞=0:756; Re=
4:01× 106) around an NACA 0012 airfoil with zero angle of attack is investigated. The com-
putational domain is taken to be 21C× 20C, where C is the chord length. The quadrilateral–
triangular mesh system (see Figure 1) contains 7666 cells and 5819 nodes, and there are 110
points that lie on the airfoil surface. The minimum distance between the cells and the airfoil
surface is equal to 1:16× 10−4 chord. Pressure coe�cient distributions on the airfoil surface
are depicted in Figure 2. As shown in Figure 2, the calculated pressure coe�cient distribution
compares well with the experimental data [32]. It is apparent that the present approach is
accurate in the turbulent �ow calculation.

5.2. Supersonic turbulent �ow over a backward–facing step

The supersonic turbulent �ow over a backward-facing step is investigated using the present
solution algorithm. Geometric con�guration and �ow�eld conditions are the same as those in
the experiment [6]. Inlet Mach number, freestream temperature, freestream pressure, freestream
velocity and Reynolds number are set to 2:0; 167K; 34:8kPa; 520m=s and 103 300, respectively.
The averaged stagnation temperature and stagnation pressure measured in the experiment
[6] were 310 K and 273 kPa, respectively. The step height in the experiment was equal to
3:18mm, whereas the width downstream of the backward-facing step was equal to 20:12mm.
A schematic of this �ow�eld is shown in Figure 3, in which points Q and A are singular points
mathematically. The Mach 2 inlet �ow expands through the centred Prandtl–Meyer expansion
wave. A recirculation zone, which is essentially the backstep corner vortex, is formed behind
the step and below the upper wall. Then the �ow is turned back parallel to the upper wall
and compressed through an oblique shock wave.
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Figure 1. Mesh for transonic turbulent �ow around an NACA 0012 airfoil.

The initial mesh shown in Figure 4 incorporates the quadrilaterals and triangles, where
the triangles are generated by the global remeshing algorithm [18]. Inside the initial mesh
(Figure 4a), the computational domain in front of the step is extended 40 times of step
height. As for the initial quadrilateral-triangular mesh (Figures 4(a) and (b)), two thin layers
of quadrilaterals are distributed along both upper and lower walls to simulate boundary layer
e�ects, and quadrilaterals are also distributed in the upstream area ahead of the backward-
facing step to allow quick stretching in the upstream direction. Besides these quadrilaterals,
triangles are generated elsewhere. The initial quadrilateral–triangular mesh is treated as a
single unstructured mesh, and interfaces between quadrilaterals and triangles are removed.
After obtaining the steady solution on initial mesh, the pressure contour and vorticity contour
are depicted in Figures 5 and 6. As shown in Figure 5, pressure remains identical in front
of the expansion wave. Pressure drops rapidly across the expansion wave, which is due to
�ow acceleration. When the �ow passes through the oblique shock wave, pressure recovers
quickly. As for the backstep corner vortex, there is no evident pressure variation. Considering
the vorticity contour (see Figure 6), it is indicated that vorticity gradient only appears in the
recirculation zone and boundary layers. To assess the accuracy of the present calculation, the
present pressure contour (see Figure 5) is compared to that obtained in the experiment [6]
(see Figure 7) and by the PHOENICS code [13] (see Figure 8). Based on the comparison,
it is indicated that the present result can accurately capture the structure of Prandtl–Meyer
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Figure 2. Pressure coe�cient distributions for transonic turbulent �ow around an NACA 0012 airfoil.
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Figure 3. Flow�eld schematic of supersonic turbulent �ow over a backward-facing step.

expansion wave and oblique shock wave. However, the �ow�eld resolution on initial mesh
is not satisfactory, especially for the expansion wave close to point A and the structure of
oblique shock wave.
To promote the �ow�eld resolution, the error indicator in Equations (12) and (14) is carried

out to obtain the new node spacing and pressure is employed as the selected key variable �.
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Figure 4. (a) Global view and (b) local view of the initial mesh of supersonic turbulent �ow over a
backward-facing step (4686 cells).

The maximum and minimum values of node spacing are set to be 0.4 and 0.04, respectively.
During remeshing, the technique of directional grid adaptation [18] with stretching ratio 1.1
is applied to the triangles �rst. Then, quadrilaterals are remeshed according to the boundaries
connected to the remeshed triangles. The �nal quadrilateral–triangular mesh plotted in Figure
9 is obtained from a combination process which couples two triangles into a new quadrilateral
when the common side of the two triangles is the longest one of these two triangles. During
the combination process, only data with respect to the cells are changed while nodal data
remain the same. Therefore, both the computational time and storage can be saved. As shown
in Figure 9, the capability of capturing the structure of expansion wave and oblique shock
wave is con�rmed. However, it is unable to remesh the backstep corner vortex. To capture the
structure of backstep corner vortex, the error indicator in Equations (12) and (14) is carried
out to obtain the new node spacing whereas vorticity magnitude (w= |∇× v|) is employed
as the selected key variable �. The maximum and minimum values of node spacing are set
to be 0.4 and 0.04, respectively. The corresponding quadrilateral–triangular mesh is plotted in
Figure 10. As demonstrated in Figure 10, the structure of backstep corner vortex is captured
precisely. However, it is unable to remesh the structure of expansion wave and oblique shock
wave.
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Figure 5. Pressure contour obtained on the initial mesh in Figure 4.
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Figure 6. Vorticity contour obtained on the initial mesh in Figure 4.
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Figure 7. Pressure contour obtained in the experiment [6].

To incorporate the advantages and avoid the disadvantages of the preceding meshes
(Figures 9 and 10), the remeshing error indicator is developed in the present paper. Hence,
the error indicator in Equations (15) and (16) is used to obtain the new node spacing, and
the maximum and minimum values of node spacing are set to be 0.4 and 0.04, respectively.
The corresponding remeshed mesh is depicted in Figure 11. In order to promote the �ow�eld
resolution, the re�ning error indicator in Equation (18) is carried out to re�ne the mesh on
Figure 11. The corresponding re�ned mesh is plotted in Figure 12. During remeshing, the
technique of directional grid adaptation [18] with stretching ratio 1.1 is applied to the tri-
angles �rst. Then, quadrilaterals are remeshed according to the boundaries connected to the
remeshed triangles. The quadrilateral–triangular mesh plotted in Figure 11 is obtained from a
combination process which couples two triangles into a new quadrilateral when the common
side of the two triangles is the longest one of these two triangles. During the combination
process, only data with respect to the cells are changed while nodal data remain the same.
Therefore, both the computational time and storage can be saved. During re�ning, it is noted
that the value of |Dw=Dt| increases abruptly as it approaches the boundary layer, especially
in the viscous sublayer. Hence, a weighted function �∗ in Equation (18) is imposed to coun-
teract the above situation. As demonstrated in the adaptive mesh in Figure 12, the structure
of backstep corner vortex, expansion wave and oblique shock wave is clearly indicated. After
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Figure 8. Pressure contour computed by the PHOENICS code [13].

achieving the steady solution on the adaptive mesh in Figure 12, the pressure contour and vor-
ticity contour are plotted in Figures 13 and 14. Comparing the pressure contours (see Figures
5 and 13), the high-resolutional result is demonstrated on the adaptive mesh, especially for
the oblique shock wave and expansion wave close to point A. To evaluate the accuracy of the
present calculation on adaptive mesh, the present pressure contour (Figure 13) is compared to
that obtained in the experiment [6] (Figure 7) and by the PHOENICS code [13] (Figure 8).
As demonstrated in Figures 8 and 13, the numerical result obtained by the present adaptive
strategy (Figure 13) compares well with that obtained by the PHOENICS code (Figure 8).
As far as the experimental data are concerned, the discrepancy is found for pressure contours
near the downstream of the upper wall. Besides the aforementioned discrepancy, both the nu-
merical results obtained by the present adaptive strategy (Figure 13) and by the PHOENICS
code (Figure 8) match well with the experimental data (Figure 7). Furthermore, the accuracy
of the adaptive solution is con�rmed. From the vorticity contours (see Figures 6 and 14),
it is found that high-resolutional structure of backstep corner vortex is distinctly indicated
on the adaptive mesh (Figure 14). For the above calculations, the Fortran 77 adopted as the
programming language and computations are performed on the Dec 500ae workstation. The
non-adaptive calculation on the initial mesh in Figure 4 takes 2237 s on the Dec 500ae work-
station, whereas the adaptive calculation on the adaptive mesh in Figure 12 takes 7945 s on
the same workstation.
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Figure 9. Adaptive mesh obtained using Equation (12) as the error indicator and pressure
as the key variable (6441 cells).

Figure 10. Adaptive mesh obtained using Equation (12) as the error indicator and
vorticity magnitudeas the key variable (4420 cells).
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Figure 11. Adaptive mesh obtained using the present remeshing error
indicator in Equation (15) (6274 cells).

Figure 12. Adaptive mesh obtained using the present adaptive strategy (12 634 cells).
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Figure 13. Pressure contour obtained on the adaptive mesh in Figure 12.
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Figure 14. Vorticity contour obtained on the adaptive mesh in Figure 13.

6. CONCLUSIONS

The main contribution of this paper is to develop an adaptive strategy incorporating mesh
remeshing as well as re�ning and a locally implicit scheme with anisotropic dissipation model
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on a quadrilateral–triangular mesh to study the supersonic turbulent �ow over a backward-
facing step. The remeshing error indicator incorporates the uni�ed magnitude of substantial
derivative of pressure and that of vorticity magnitude to treat the new node spacing. The
re�ning error indicator incorporates the uni�ed magnitude of substantial derivative of pres-
sure and that of weighted vorticity magnitude. A weighted function is added to the term of
vorticity magnitude which substantially counteracts the abrupt increasing vorticity magnitude
as it approaches the boundary layer, especially in the viscous sublayer. After performing the
transonic turbulent �ow around an NACA 0012 airfoil, the accuracy of the present solution
algorithm is con�rmed by comparing the present result with experimental data. According
to the adaptive mesh obtained using the present adaptive strategy, the structure of backstep
corner vortex, expansion wave and oblique shock wave is distinctly captured in the turbulent
calculation.
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